Robots Do Lie Dammit
Posted: Mon Feb 11, 2008 12:26 pm
The worst part of this is that I found it while reading a webcomic (8-bit)...
Robots Evolve And Learn How to Lie
by Michael Abrams
http://discovermagazine.com/2008/jan/ro ... how-to-lie
Robots can evolve to communicate with each other, to help, and even to deceive each other, according to Dario Floreano of the Laboratory of Intelligent Systems at the Swiss Federal Institute of Technology.
Floreano and his colleagues outfitted robots with light sensors, rings of blue light, and wheels and placed them in habitats furnished with glowing “food sources” and patches of “poison” that recharged or drained their batteries. Their neural circuitry was programmed with just 30 “genes,” elements of software code that determined how much they sensed light and how they responded when they did. The robots were initially programmed both to light up randomly and to move randomly when they sensed light.
To create the next generation of robots, Floreano recombined the genes of those that proved fittest—those that had managed to get the biggest charge out of the food source.
The resulting code (with a little mutation added in the form of a random change) was downloaded into the robots to make what were, in essence, offspring. Then they were released into their artificial habitat. “We set up a situation common in nature—foraging with uncertainty,” Floreano says. “You have to find food, but you don’t know what food is; if you eat poison, you die.” Four different types of colonies of robots were allowed to eat, reproduce, and expire.
By the 50th generation, the robots had learned to communicate—lighting up, in three out of four colonies, to alert the others when they’d found food or poison. The fourth colony sometimes evolved “cheater” robots instead, which would light up to tell the others that the poison was food, while they themselves rolled over to the food source and chowed down without emitting so much as a blink.
Some robots, though, were veritable heroes. They signaled danger and died to save other robots. “Sometimes,” Floreano says, “you see that in nature—an animal that emits a cry when it sees a predator; it gets eaten, and the others get away—but I never expected to see this in robots.”
Report: Evolutionary Conditions for the Emergence of Communication in Robots
http://www.current-biology.com/content/ ... 2207009281
Summary
Information transfer plays a central role in the biology of most organisms, particularly social species [1, 2]. Although the neurophysiological processes by which signals are produced, conducted, perceived, and interpreted are well understood, the conditions conducive to the evolution of communication and the paths by which reliable systems of communication become established remain largely unknown. This is a particularly challenging problem because efficient communication requires tight coevolution between the signal emitted and the response elicited [3]. We conducted repeated trials of experimental evolution with robots that could produce visual signals to provide information on food location. We found that communication readily evolves when colonies consist of genetically similar individuals and when selection acts at the colony level. We identified several distinct communication systems that differed in their efficiency. Once a given system of communication was well established, it constrained the evolution of more efficient communication systems. Under individual selection, the ability to produce visual signals resulted in the evolution of deceptive communication strategies in colonies of unrelated robots and a concomitant decrease in colony performance. This study generates predictions about the evolutionary conditions conducive to the emergence of communication and provides guidelines for designing artificial evolutionary systems displaying spontaneous communication.
Robots Evolve And Learn How to Lie
by Michael Abrams
http://discovermagazine.com/2008/jan/ro ... how-to-lie
Robots can evolve to communicate with each other, to help, and even to deceive each other, according to Dario Floreano of the Laboratory of Intelligent Systems at the Swiss Federal Institute of Technology.
Floreano and his colleagues outfitted robots with light sensors, rings of blue light, and wheels and placed them in habitats furnished with glowing “food sources” and patches of “poison” that recharged or drained their batteries. Their neural circuitry was programmed with just 30 “genes,” elements of software code that determined how much they sensed light and how they responded when they did. The robots were initially programmed both to light up randomly and to move randomly when they sensed light.
To create the next generation of robots, Floreano recombined the genes of those that proved fittest—those that had managed to get the biggest charge out of the food source.
The resulting code (with a little mutation added in the form of a random change) was downloaded into the robots to make what were, in essence, offspring. Then they were released into their artificial habitat. “We set up a situation common in nature—foraging with uncertainty,” Floreano says. “You have to find food, but you don’t know what food is; if you eat poison, you die.” Four different types of colonies of robots were allowed to eat, reproduce, and expire.
By the 50th generation, the robots had learned to communicate—lighting up, in three out of four colonies, to alert the others when they’d found food or poison. The fourth colony sometimes evolved “cheater” robots instead, which would light up to tell the others that the poison was food, while they themselves rolled over to the food source and chowed down without emitting so much as a blink.
Some robots, though, were veritable heroes. They signaled danger and died to save other robots. “Sometimes,” Floreano says, “you see that in nature—an animal that emits a cry when it sees a predator; it gets eaten, and the others get away—but I never expected to see this in robots.”
Report: Evolutionary Conditions for the Emergence of Communication in Robots
http://www.current-biology.com/content/ ... 2207009281
Summary
Information transfer plays a central role in the biology of most organisms, particularly social species [1, 2]. Although the neurophysiological processes by which signals are produced, conducted, perceived, and interpreted are well understood, the conditions conducive to the evolution of communication and the paths by which reliable systems of communication become established remain largely unknown. This is a particularly challenging problem because efficient communication requires tight coevolution between the signal emitted and the response elicited [3]. We conducted repeated trials of experimental evolution with robots that could produce visual signals to provide information on food location. We found that communication readily evolves when colonies consist of genetically similar individuals and when selection acts at the colony level. We identified several distinct communication systems that differed in their efficiency. Once a given system of communication was well established, it constrained the evolution of more efficient communication systems. Under individual selection, the ability to produce visual signals resulted in the evolution of deceptive communication strategies in colonies of unrelated robots and a concomitant decrease in colony performance. This study generates predictions about the evolutionary conditions conducive to the emergence of communication and provides guidelines for designing artificial evolutionary systems displaying spontaneous communication.